Abstract

The red-bed soft rocks in South China have obvious creep characteristics and are prone to engineering geological disasters such as landslide and foundation settlement under the action of rainfall, groundwater, and load. In order to reveal its creep characteristics and mechanism under complex conditions, a step-loading creep test was carried out under chemical-stress-seepage coupling, and the energy evolution law of the whole creep process was analyzed based on linear energy storage and energy dissipation theory. The results also show that the acid chemical solution has the greatest influence on the triaxial strength and creep strength, and the creep damage and energy evolution of red-bed soft rock are universal. The creep damage and total strain increase with the increase of acidity, the decrease of confining pressure, and the increase of seepage pressure. The evolution law of creep damage shows the characteristics of slow-acceleration-rapid growth, and with the increase of load level, it has obvious transfer and accumulation. After entering the constant velocity creep stage, the damage rate begins to accelerate. The proportion of instantaneous strain and creep strain in the total strain increment is about 50%, and confining pressure has little influence on their respective proportions. The instantaneous strain is more sensitive to the acidity of the chemical solution, and the proportion of creep strain increases gradually with the increase of seepage pressure. The relationship between elastic energy density and total energy density is linear. The elastic energy density and dissipated energy density in the loading stage and creep stage all increase nonlinearly with loading time. The density of dissipated energy in the creep phase is lower than that in the loading phase, but the opposite is true in the higher stress phase, and the law of energy dissipation can explain the hardening damage effect in the creep process of soft rock samples. The research results provide a new perspective for us to reveal the mechanical properties and failure mechanism of red-bed soft rocks and provide an important theoretical basis for predicting and evaluating the creep instability and long-term stability of such rocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.