Abstract
The coupling coordination between the digital economy and industrial green high-quality development has become an inevitable choice to promote economic high-quality development in China. This paper conducts an empirical analysis of the coupling coordination degree between the digital economy and industrial green high-quality development via the entropy evaluation method, coupling coordination model, Dagum Gini coefficient and its decomposition, and β spatial convergence model, based on the spatial data of 31 provinces in China for a time period ranging from 2008 to 2020. The major research findings of this study are as follows: (1) the coupling coordination between the digital economy and industrial green high-quality development represents a whole steady-upward trend in China, with large regional differences. (2) There is a gradual decrease in the overall spatial difference of the coupling coordination, with the largest intra-regional difference in the eastern region, and significant inter-regional differences in the east-west, east-northeast, and east-central regions. Moreover, the hypervariable density serves as the major source of the regional differences. (3) There exists β Convergence for coupling coordination degrees of the whole country and the four regions. However, the spatial effects are different in different regions due to different influencing factors. Therefore, sufficient attention should be paid to the dynamic trend, the difference, and the imbalance of the coupling coordination degree between the digital economy and industrial green high-quality development. The research is of great significance for accurately implementing policies according to different levels of local resource endowments and economic development, and narrowing the regional differences of the coupling coordination between the digital economy and industrial green high-quality development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.