Abstract

The brain's information processing power is limited by its energy supply but the allocation of cortical energy use between conscious and unconscious information processing is unknown. We calculate, from electrophysiological data in primates, that conscious perception reflects surprisingly small local alterations in mean cortical neuronal firing rate and energy consumption: perceiving visual stimulus movement, altered tactile vibration frequency, or tone stream separation, changes local cortical energy use by less than 6%. Our estimations of energy use suggest that a “design strategy”, of encoding signals using separate neurons that increase and decrease their firing rate, serves to minimise changes of energy use in the cortical areas mediating perception and may result in stimulus perception failing to be detected by BOLD functional imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.