Abstract

Riboswitches are regulatory elements in the 5'-untranslated region (5'-UTR) of bacterial mRNAs that bind certain metabolites with high specificity and affinity. The 202 nucleotide (nt)-long btuB riboswitch RNA of E. coli interacts specifically with coenzyme B12 and its derivatives thereby leading to changes in the RNA structure and hence to an altered expression of the downstream btuB gene. We report the investigations of the rearrangement of the three-dimensional structure of the btuB riboswitch upon binding to four different B12 derivatives: coenzyme B12, vitamin B12, adenosyl factor A and adenosyl-cobinamide. In-line probing experiments have shown that the corrin ring plays the crucial role in switching the three-dimensional riboswitch structure. Instead, the apical ligands influence only the binding affinity of the B12 derivative to the btuB riboswitch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.