Abstract
The effect of illumination energy on the electrical parameters of a monocrystalline silicon solar module was investigated and results used to reveal the effective spectrum which can help in generating the optimum power and photovoltaic effect. The current-voltage (I-V) characteristics of the device were measured under different illumination energies. Results showed that the ideality factor (n), series resistance (Rs) and saturation current (Io) are mostly dependent on the illumination energy, while the shunt resistance (Rsh) and photocurrent (Iph) are illumination intensity-dependent. The increase in illumination energy led to decrease in the series resistance but increase in the saturation current and ideality factor. On the other hand, the increase in illumination intensity resulted in increasing the shunt resistance and open circuit voltage. The study is important to understand the effective solar spectrum in producing the optimum photovoltaic performance, which can be also useful to interpret the photodetectors and photodiodes response to a specific spectrum.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have