Abstract

The grey correlation theory and multiple regression method are used to reveal macro performance degradation rules of road concrete under loading and freeze-thaw and drying-wetting cycles; then the correlation between mesoscopic pore structure and residual strength and antifreezing index of concrete is analyzed. Under the freeze-thaw and drying-wetting cycles with 50% loading level, the pore structure parameters that influence concrete strength show the following sequence: fractal dimension > most probable pore size > porosity > less harmful pore. The correlation between strength and pore parameters can be represented with multiple nonlinear equations. A negative correlation is shown between strength and fractal dimension and most probable pore size. Conversely, a positive correlation is shown between strength, porosity, and less harmful pore. Under the freeze-thaw and drying-wetting cycles with 80% loading level, the pore structure parameters that influence concrete strength show another sequence: fractal dimension > porosity > less harmful pore > most probable pore size. The correlation between antifreezing index and pore parameters should be described with multiple linear equations. The relative dynamic elastic modulus shows a positive correlation to most probable pore size, pore surface area, and porosity but a negative correlation to less harmful pore and pore spacing coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.