Abstract

In this study, we focused on exploring the correlations between the pore surface fractal dimensions and the pore structure parameters, strength and shrinkage properties of basalt fiber-reinforced concrete (BFRC). The pore structure of BFRCs with various fiber contents and fiber lengths was investigated using mercury intrusion porosimetry (MIP) measurements. Through Zhang’s model, the fractal characteristics of BFRCs in the whole pore size range and in different pore size ranges were calculated from the MIP test data. The results showed that the addition of BF increased the total porosity, total pore volume and pore area but decreased the average pore diameter, indicating that BFs refined the pore structure of the concrete. BFRC presented obvious fractal characteristics in the entire pore-size range and individual pore-size ranges; generally, the fractal dimension increased with increasing fiber content. Moreover, correlation analysis suggested that the fractal dimension of BFRC in the whole pore-size range (FD) was closely related to the fractal dimension in the macropore region (Dm) and average pore diameter (APD). The influence of pore structure factors on mechanical strength and shrinkage was studied by grey correlation theory, and the results showed that Dm showed positive correlations with strength and fracture energy, with increasing Dm tending to strengthen and toughen the concrete. An increase in fiber content and length was detrimental to reducing the drying shrinkage strain. In the transition pore region, the fractal dimension (Dt) at diameters ranging from 20 to 50 nm and shrinkage strain exhibited a highly linear relation. These results merit careful consideration in macro-property evaluation by using the pore surface fractal dimension in a specific region instead of the whole region. Finally, grey target theory was applied to evaluate the rank of the mechanical strength and shrinkage of concrete, and the results showed that the overall properties of concrete with a BF length of 18 mm and a BF content of 0.06% ranked the best.

Highlights

  • Concrete is a brittle material with low tensile strength

  • The influence of pore structure factors on mechanical strength and shrinkage was studied by grey correlation theory, and the results showed that Dm showed positive correlations with strength and fracture energy, with increasing Dm tending to strengthen and toughen the concrete

  • The object of this study is to investigate the pore structure and fractal characteristics of basalt fiber reinforced concrete (BFRC) with various fiber lengths and contents and to determine the correlation between the fractal dimension and the pore structure factors, mechanical strength and shrinkage of BFRCs

Read more

Summary

Introduction

Concrete is a brittle material with low tensile strength. Concrete structures are exposed to the natural environment and subjected to the coupling effect of environmental factors and load during their whole service life. Shrinkage-induced cracks spread and expand rapidly under repeated loading, which significantly lowers the load-bearing capability and fatigue performance of concrete [1]. Structural damage can occur once the ultimate tensile strength of concrete is reached, which can result in a durability issue. To reduce crack sensitivity and solve the limitation of quasi-brittle fractures in concrete, the utilization of fiber in concrete has attracted extensive attention in recent years. Fiber-reinforced concrete (FRC) has been developed into a new type of concrete that has been successfully applied in Materials 2020, 13, 3238; doi:10.3390/ma13143238 www.mdpi.com/journal/materials

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.