Abstract

Spaceborne GNSS-R technology is a new remote sensing method for soil moisture monitoring. Focusing on the significant influence of water on the surface reflectivity of CYGNSS, this paper improved the removal method of water influence according to the spatial resolution of CYGNSS data. Due to the disturbance effect of the incident angle, microwave frequency and soil type on the Fresnel reflection coefficient in surface reflectivity, a normalization method of Fresnel reflection coefficient was proposed after analyzing the data characteristics of variables in the Fresnel reflection coefficient. Finally, combined with the soil moisture retrieval method of linear equation, the accuracy was compared and verified by using measured data, SMAP products and official CYGNSS products. The results indicate that the normalization method of the Fresnel reflection coefficient could effectively reduce the influence of relevant parameters on the Fresnel reflection coefficient, but the normalization effect became worse at large incident angles (greater than 65°). Compared with the official CYGNSS product, the retrieval accuracy of optimized soil moisture was improved by 10%. The method proposed in this paper will play an important reference role in the study of soil moisture retrieval using spaceborne GNSS-R data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.