Abstract

In this paper, we present an approach based on convolutional neural networks to build an automatic speech recognition system for the Amazigh language. This system is built with TensorFlow and uses mel frequency cepstral coefficient (MFCC) to extract features. In order to test the effect of the speaker's gender and age on the accuracy of the model, the system was trained and tested on several datasets. The first experiment the dataset consists of 9240 audio files. The second experiment the dataset consists of 9240 audio files distributed between females and males’ speakers. The last experiment 3 the dataset consists of 13860 audio files distributed between age 9-15, age 16-30, and age 30+. The result shows that the model trained on a dataset of adult speaker’s age +30 categories generates the best accuracy with 93.9%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.