Abstract

Abstract An automatic speech recognition (ASR) system translates spoken words or utterances (isolated, connected, continuous, and spontaneous) into text format. State-of-the-art ASR systems mainly use Mel frequency (MF) cepstral coefficient (MFCC), perceptual linear prediction (PLP), and Gammatone frequency (GF) cepstral coefficient (GFCC) for extracting features in the training phase of the ASR system. Initially, the paper proposes a sequential combination of all three feature extraction methods, taking two at a time. Six combinations, MF-PLP, PLP-MFCC, MF-GFCC, GF-MFCC, GF-PLP, and PLP-GFCC, are used, and the accuracy of the proposed system using all these combinations was tested. The results show that the GF-MFCC and MF-GFCC integrations outperform all other proposed integrations. Further, these two feature vector integrations are optimized using three different optimization methods, particle swarm optimization (PSO), PSO with crossover, and PSO with quadratic crossover (Q-PSO). The results demonstrate that the Q-PSO-optimized GF-MFCC integration show significant improvement over all other optimized combinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call