Abstract

Abstract An automatic speech recognition (ASR) system translates spoken words or utterances (isolated, connected, continuous, and spontaneous) into text format. State-of-the-art ASR systems mainly use Mel frequency (MF) cepstral coefficient (MFCC), perceptual linear prediction (PLP), and Gammatone frequency (GF) cepstral coefficient (GFCC) for extracting features in the training phase of the ASR system. Initially, the paper proposes a sequential combination of all three feature extraction methods, taking two at a time. Six combinations, MF-PLP, PLP-MFCC, MF-GFCC, GF-MFCC, GF-PLP, and PLP-GFCC, are used, and the accuracy of the proposed system using all these combinations was tested. The results show that the GF-MFCC and MF-GFCC integrations outperform all other proposed integrations. Further, these two feature vector integrations are optimized using three different optimization methods, particle swarm optimization (PSO), PSO with crossover, and PSO with quadratic crossover (Q-PSO). The results demonstrate that the Q-PSO-optimized GF-MFCC integration show significant improvement over all other optimized combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.