Abstract

The conjugate gradient method is a useful and powerful approach for solving large-scale minimization problems. Liu and Storey developed a conjugate gradient method, which has good numerical performance but no global convergence under traditional line searches such as Armijo line search, Wolfe line search, and Goldstein line search. In this paper we propose a new nonmonotone line search for Liu-Storey conjugate gradient method (LS in short). The new nonmonotone line search can guarantee the global convergence of LS method and has a good numerical performance. By estimating the Lipschitz constant of the derivative of objective functions in the new nonmonotone line search, we can find an adequate step size and substantially decrease the number of functional evaluations at each iteration. Numerical results show that the new approach is effective in practical computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.