Abstract
Size and surface functionality are critically important for organic-inorganic hybrid semiconductive nanocomposites in terms of stable photoelectrochemical properties and superior device performance. The ability of reversible deactivation radical polymerization to control the chain length and dispersity of polymers is herein extended to the tailor-made synthesis of nanocomposites with tunable size, distribution, and surface coating. This is exemplified by the fabrication of cadmium selenide (CdSe) quantum dots (QDs) with uniform sizes from 2 to 10 nm that are intimately coated with poly(3-hexylthiophene) (i.e., CdSe@P3HT).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.