Abstract

In this study, we have investigated the control of cooling rate on the composition of titanomagnetite formed from a trachybasaltic melt. Results show that disequilibrium growth conditions exert a primary control on the abundance, texture, and composition of the crystals. As the degree of cooling is increased, titanomagnetites show immature textures and are progressively enriched in Al + Mg and depleted in Ti. Thus, early-formed titanomagnetite nuclei do not re-equilibrate with the melt over faster cooling rates; instead, their compositions are far from equilibrium. On the basis of the different intra-crystal redistribution rates for Ti, Al, and Mg, we have calibrated a geospeedometer that represents the first quantitative description of the effect of cooling rate on titanomagnetite composition. This model was tested using the compositions of titanomagnetites in lava and dike samples from Mt. Etna volcano whose crystallization conditions resemble those of our experiments. Cooling rates calculated for lava samples are comparable with those measured in several volcanic complexes. At Mt. Etna, compositional variations of titanomagnetite grains from the innermost to the outermost part of a dike testify to progressively higher degrees of cooling, in agreement with numerical simulations of thermal gradients in and around magmatic intrusions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.