Abstract
In the context of global warming, terrestrial ecosystems have undergone significant variations. China has implemented a variety of ecological engineering methods to enhance carbon stocks. However, understanding the spatial and temporal dynamics of carbon and water in drylands under climate change remains limited. Here, our research elucidates carbon and water dynamics in China’s drylands over the last two decades, with a focus on understanding spatial–temporal changes and the effects of ecological engineering on the carbon–water cycle. Furthermore, this study investigates the relationships among climate change, water use efficiency (WUE), and its components—Gross Primary Productivity (GPP) and Evapotranspiration (ET)—identifying key climatic drivers and assessing possible directions for enhancing WUE under changing climate conditions. Our research indicates that both GPP and ET have significantly increased over the past 20 years, with growth rates of 4.96 gC·m−2·yr−1 and 4.26 mm·yr−1, respectively. Meanwhile, WUE exhibited a slight declining trend, at a rate of −0.004 gC·mmH2O·yr−1. This confirms the positive impact of vegetation restoration efforts. We found that fluctuations in interannual WUE were influenced by human activities and climate change. Precipitation (Prec) was the key climatic factor driving the GPP increase. Both solar radiation (Solra) and Prec were crucial for the interannual variation of WUE. Interestingly, WUE was the main factor affecting GPP development. The decline in WUE in drylands is linked to interannual variability in WUE and increased Vapor Pressure Deficit (VPD) due to warming. Seasonal variations in how WUE responds to climatic factors were also observed. For instance, fall rainfall increased WUE, while spring rainfall decreased it. Fall WUE was highly sensitive to VPD. Spatially, we found higher WUE in China’s eastern and Xinjiang regions and lower in inland areas and the Tibetan Plateau. Geomorphologic factors and soil conditions were the main drivers of this spatial variability in WUE. Temperature (Tem), Solra, VPD, and relative humidity (Relah) also played significant roles. Our results show a generalized inverse persistence in WUE variability. This suggests a potential for increased WUE in the eastern regions and a risk of decreased WUE on the Tibetan Plateau. Addressing the threat of vegetation decline in arid regions, particularly within the Tibetan Plateau, is crucial. It is essential to adapt forestry practices to complement the carbon and water cycles in these landscapes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.