Abstract

Past research has revealed that central vision is more important than peripheral vision in controlling the amplitude of target-directed aiming movements. However, the extent to which central vision contributes to movement planning versus online control is unclear. Since participants usually fixate the target very early in the limb trajectory, the limb enters the central visual field during the late stages of movement. Hence, there may be insufficient time for central vision to be processed online to correct errors during movement execution. Instead, information from central vision may be processed offline and utilised as a form of knowledge of results, enhancing the programming of subsequent trials. In the present research, variability in limb trajectories was analysed to determine the extent to which peripheral and central vision is used to detect and correct errors during movement execution. Participants performed manual aiming movements of 450 ms under four different visual conditions: full vision, peripheral vision, central vision, no vision. The results revealed that participants utilised visual information from both the central and peripheral visual fields to adjust limb trajectories during movement execution. However, visual information from the central visual field was used more effectively to correct errors online compared to visual information from the peripheral visual field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call