Abstract

This review describes the effects of ethanol on the components of neuronal transmission and the relationship of such effects to the behavioural actions of ethanol. The concentrations of ethanol with acute actions on voltage-sensitive ion channels are first described, then the actions of ethanol on ligand-gated ion channels, including those controlled by cholinergic receptors, 5-hydroxytryptamine receptors, the various excitatory amino acid receptors, and γ-aminobutyric acid receptors. Acute effects of ethanol are then described on brain areas thought to be involved in arousal and attention, the reinforcing effects of ethanol, the production of euphoria, the actions of ethanol on motor control, and the amnesic effects of ethanol; the acute effects of ethanol demonstrated by EEG studies are also discussed. Chronic effects of alcohol on neuronal transmission are described in the context of the various components of the ethanol withdrawal syndrome, withdrawal hyperexcitability, dysphoria and anhedonia, withdrawal anxiety, craving, and relapse drinking. Electrophysiological studies on the genetic influences on the effects of ethanol are discussed, particularly the acute actions of ethanol and electrophysiological differences reported in individuals predisposed to alcoholism. The conclusion notes the concentration of studies on the classical transmitters, with relative neglect of the effects of ethanol on peptides and on neuronal interactions between brain areas and integrated patterns of neuronal activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call