Abstract
The Continuous Strength Method (CSM) provides accurate resistance predictions for both stocky and slender stainless steel cross-sections; in the case of the former, allowance is made for the beneficial effects of strain hardening, while for the latter, design is simplified by the avoidance of effective width calculations. Although the CSM strain limits can be used in conjunction with advanced analysis for the stability design of members, for hand calculations, the method is currently limited to the determination of cross-sectional resistance only, i.e. member buckling resistance is not covered. To address this limitation, extension of the CSM to the design of stainless steel tubular section columns is presented herein. The proposed approach is based on the traditional Ayrton-Perry formulation, but features enhanced CSM cross-section resistances and a generalized imperfection parameter that is a function of cross-section slenderness. The value of the imperfection parameter increases as the slenderness of the cross-section reduces to compensate for the detrimental effect of plasticity on member stability that is not directly captured in the elastic/first yield Ayrton-Perry approach. The accuracy of the proposed approach is assessed against numerical results generated in the current study and existing experimental results collected from the literature. The presented comparisons show that the CSM provides consistently more accurate member buckling resistance predictions than the current EN 1993-1-4 design rules for all stainless steel grades. The reliability of the proposed approach is demonstrated through statistical analyses performed in accordance with EN 1990. Finally, the paper presents a framework through which the proposed approach can be developed for other cross-section types and materials.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have