Abstract
The continuous strength method (CSM) is a deformation-based structural design approach that enables material strain hardening properties to be exploited, thus resulting in more accurate and consistent capacity predictions. To date, the CSM has featured an elastic, linear hardening material model and has been applied to cold-formed steel, stainless steel and aluminium. However, owing to the existence of a yield plateau in its stress-strain response, this model is not well suited to hot-rolled carbon steel. Thus, a tri-linear material model, which can closely represent the stress-strain response of hot-rolled carbon steel, is introduced and incorporated into the CSM design framework. Maintaining the basic design philosophy of the existing CSM, new cross-section resistance expressions are derived for a range of hot-rolled steel structural section types subjected to compression and bending. The design provisions of EN 1993-1-1 and the proposed CSM are compared with experimental results collected from the literature and numerical simulations performed in this paper. Overall, the CSM is found to offer more accurate and consistent predictions than the current design provisions of EN 1993-1-1. Finally, statistical analyses are carried out to assess the reliability level of the two different design methods according to EN 1990 (2002).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.