Abstract

This paper aims to investigate the cross-section response of cold-formed stainless steel (CFSS) elliptical hollow sections (EHS) under combined biaxial bending and axial compression. In the present study, an advanced finite element (FE) model was adopted to perform a comprehensive parametric study for CFSS EHS under combined biaxial bending and axial compression, with different stainless steel alloys, as well as a broad range of cross-section sizes, aspect ratios, loading eccentricities and angles. Numerical results obtained from the parametric study were compared with the design strengths calculated by the current design rules in European code EN 1993-1-4, American specification SEI/ASCE 8-02 and Australian/New Zealand standard AS/NZS 4673. In addition, the Continuous Strength Method (CSM) for CFSS circular hollow sections (CHS) under combined actions, was also evaluated for the design of CFSS EHS under combined actions. The comparisons revealed that the current design codes EN 1993-1-4, SEI/ASCE 8-02 and AS/NZS 4673 provided conservative and very scattered predictions for CFSS EHS under combined actions. The existing CSM can provide more accurate predictions than the current design codes (i.e., AS/NZS 4673, EN 1993-1-4 and SEI/ASCE 8-02), but a further improvement is needed. In the present study, a modified CSM is proposed for CFSS EHS under combined actions, which can achieve reliable and accurate design predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.