Abstract
An n-dimensional continuous fractional wavelet transform involving <em>n</em>-dimensional fractional Fourier transform is studied and its properties are obtained on Gel'fand and Shilov spaces of type <em>W<sub>M</sub></em>(R<sup>n</sup>), <em>W</em><sup>Ω</sup> (C<sup>n</sup>) and W<sup>Ω</sup><sub>M</sub> (C<sup>n</sup>). It is shown that continuous fractional wavelet transform, W<sup>α</sup><sub>ψ</sub>Φ : W<sub>M</sub>(R<sup>n</sup>) → W<sub>M</sub>(R<sup>n</sup> × R<sub>+</sub>), W<sup>α</sup><sub>ψ</sub>Φ : W<sup>Ω</sup> (C<sup>n</sup>) → W<sup>Ω</sup> (C<sup>n</sup> × R<sub>+</sub>) and W<sup>α</sup><sub>ψ</sub>Φ : W<sup>Ω</sup><sub>M</sub> (C<sup>n</sup>) → W<sup>Ω</sup><sub>M</sub> (C<sup>n</sup> × R<sub>+</sub>) are linear and continuous maps, where R<sup>n</sup> and C<sup>n</sup> are the usual Euclidean spaces.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have