Abstract

Based on detailed sedimentological analyses of cores, interpretation of well logs and a set of geochemical measurements performed on lacustrine sedimentary rocks, the palaeoenvironmental evolution and the sedimentary architecture of the Paleogene continental Vistrenque Basin (SE France) have been reconstructed. The analysis of sedimentary archives revealed three main stages of basin infill evolution: (1) a deep-lake basin (Priabonian-earliest Rupelian) whose sedimentation was dominated by terrigenous gravity-driven deposits during a period of high subsidence rate and strike-slip fault activity and under a prevailing humid climate; (2) an evaporative deep lake (early Rupelian) characterized by a drastic reduction in lake volume (forced-regression), terrigenous supplies and deposition of evaporites in disconnected sub-basins; (3) an overall long-term normal regressive stage (middle Rupelian to earliest Chattian) of lake infill characterized by an increase in terrigenous supplies and a vertical upward transition from deep-lake gravity-driven deposits to marginal lake and floodplain sedimentation. The onset of lake volume reduction and forced regression during the early Rupelian is associated with (1) the reworking of marginal lake carbonates into the deep lake areas, (2) the deposition of organic-rich sediments (TOC > 10%) coupled with sulphate-reduction processes in the deepest areas of the lake, (3) an important decrease in terrigenous supplies and (4) a long-term increase in δ18O of matrix-supported carbonates. This early Rupelian forced regression of the Vistrenque lacustrine system is interpreted to result from a regional decrease in precipitation in response to global cooling during the Eocene-Oligocene Transition (EOT). The final infill of the Vistrenque lake system (late Rupelian-early Chattian) and the onset of a floodplain occurred in more humid conditions during a stage of decreased activity of the Nîmes Fault, prior to or during an early stage of the Liguro-Provençal rifting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call