Abstract

The contact resistance formed between MoS2 and metal electrodes plays a key role in MoS2-based electronic devices. The Schottky barrier height (SBH) is a crucial parameter for determining the contact resistance. However, the SBH is difficult to modulate because of the strong Fermi-level pinning (FLP) at MoS2-metal interfaces. Here, we investigate the FLP effect and the contact types of monolayer and multilayer MoS2-metal van der Waals (vdW) interfaces using density functional theory (DFT) calculations based on Perdew-Burke-Ernzerhof (PBE) level. It has been demonstrated that, compared with monolayer MoS2-metal close interfaces, the FLP effect can be significantly reduced in monolayer MoS2-metal vdW interfaces. Furthermore, as the layer number of MoS2 increases from 1L to 4L, the FLP effect is first weakened and then increased, which can be attributed to the charge redistribution at the MoS2-metal and MoS2-MoS2 interfaces. In addition, the p-type Schottky contact can be achieved in 1L-4L MoS2-Pt, 3L MoS2-Au, and 2L-3L MoS2-Pd vdW interfaces, which is useful for realizing complementary metal oxide semiconductor (CMOS) logic circuits. These findings indicated that the FLP and contact types can be effectively modulated at MoS2-metal vdW interfaces by selecting the layer number of MoS2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.