Abstract

The construction of ternary TiO2 NTs/Ag3PO4–AgBr photocatalysts was carried out by the SILAR deposition of Ag3PO4 and AgBr on TiO2 nanotube arrays (TiO2 NTs) for enhancing the photocatalytic application in H2 evolution and dyeing wastewater remediation. The adjustment of Ag3PO4/AgBr deposition cycles was used to optimize the optical absorption and photocatalytic property. The TiO2 NTs/Ag3PO4–AgBr (5) prepared with 5 cycle deposition of Ag3PO4 and AgBr exhibited the optimal photoelectric activity and photocatalytic performances. The photocatalytic rate constants for the degradation of MO, RhB and MB dyes achieved 1.35 × 10−2, 3.30 × 10−2 and 4.47 × 10−2 min−1, respectively, and the visible light-driven photocatalytic H2 evolution rate achieves 46.87 μmol cm−2 h−1. •O2− radicals exhibited the key influence on the organic dye degradation, and the as-prepared photocatalysts showed exceedingly high photocatalytic activity and stability. Furthermore, the photocatalytic mechanism was proposed based on the ESR result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call