Abstract
Developing cost-effective and efficient electrocatalysts is essential for advancing a green energy future. Herein, a NiFe-layered double hydroxide loaded on reduced graphene oxide (NiFe-LDHs@rGO) hybrid was synthesized using a straightforward three-step process involving exfoliation tearing, electrostatic self-assembly, and chemical reduction. The face-to-face packing and ultrathin exfoliation enable strong heterogeneous interactions, fully harnessing the potential of these complementary two-dimensional counterparts. Consequently, the resultant catalyst displays outstanding oxygen evolution reaction (OER) catalytic activity and stability, whose overpotential is as low as 241 mV at 30 mA cm-2 and 255 mV at 50 mA cm-2 with a low Tafel slope of 62.1 mV dec-1. Both the experimental results and density functional theory (DFT) calculations reveal that the face-to-face assembly strengthens the electronic interactions between NiFe-LDHs and rGO, which effectively modulates the d-band center of Ni and Fesites and improves the reaction kinetics for OER. Moreover, the resultant NiFe-LDHs@rGO hybrids exhibit excellent multifunctional catalytic performance. Its hydrogen evolution reaction (HER) activity is endowed by Fe-site of NiFe-LDHs and defect states rGO and achieves a low voltage of 1.68 V to drive a current density of 10 mA cm-2 for overall water splitting. The face-to-face heteroassembly also imparts NiFe-LDHs@rGO with superior oxygen reduction reaction (ORR) activity, with a half-wave potential of 0.70 V and a limiting current density of 4.2 mA cm-2. Its ORR primarily follows a four-electron transfer pathway with a minor contribution from a two-electron process. This study establishes the groundwork for optimizing two-dimensional heterogeneous interfaces in LDH@carbon-based materials for advanced energy conversion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have