Abstract
A simple artificial neural network model of image reconstruction in sensory maps is presented to explain the difficulty predators experience in targeting prey in large groups (the confusion effect). Networks are trained to reconstruct multiple randomly conformed "retinal" images of prey groups in an internal spatial map of their immediate environment. They are then used to simulate prey targeting by predators on groups of specific conformation. Networks trained with the biologically plausible associative reward-penalty method produce a more realistic model of the confusion effect than those trained with the popular but biologically implausible backpropagation method. The associative reward-penalty model makes the novel prediction that the accuracy-group size relationship is U shaped, and this prediction is confirmed by empirical data gathered from interactive computer simulation experiments with humans as "predators." The model further predicts all factors known from previous empirical work (and most factors suspected) to alleviate the confusion effect: increased relative intensity of the target object, heterogeneity of group composition, and isolation of the target. Interestingly, group compaction per se is not predicted to worsen predator confusion. This study indicates that the relatively simple, nonattentional mechanism of information degradation in the sensory mapping process is potentially important in generating the confusion effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.