Abstract
We compute the algebra of left and right currents for a principal chiral model with arbitrary Wess-Zumino term on supergroups with zero Killing form. We define primary fields for the current algebra that match the affine primaries at the Wess-Zumino-Witten points. The Maurer-Cartan equation together with current conservation tightly constrain the current-current and current-primary operator product expansions. The Hilbert space of the theory is generated by acting with the currents on primary fields. We compute the conformal dimensions of a subset of these states in the large radius limit. The current algebra is shown to be consistent with the quantum integrability of these models to several orders in perturbation theory.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have