Abstract
We study the evolution of the interface given by two incompressible fluids with different densities in the porous strip R × [−l,l]. This problem is known as the Muskat problem and is analogous to the two phase Hele-Shaw cell. The main goal of this paper is to compare the qualitative properties between the model when the fluids move without boundaries and the model when the fluids are confined. We find that, in a precise sense, the boundaries decrease the diffusion rate and the system becomes more singular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.