Abstract

We study the cone of completely positive (cp) matrices for the first interesting case n=5\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n = 5$$\\end{document}. This is a semialgebraic set for which the polynomial equalities and inequlities that define its boundary can be derived. We characterize the different loci of this boundary and we examine the two open sets with cp-rank 5 or 6. A numerical algorithm is presented that is fast and able to compute the cp-factorization even for matrices in the boundary. With our results, many new example cases can be produced and several insightful numerical experiments are performed that illustrate the difficulty of the cp-factorization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.