Abstract

The transition matrix, which characterizes a discrete time homogeneous Markov chain, is a stochastic matrix. A stochastic matrix is a special nonnegative matrix with each row summing up to 1. In this paper, we focus on the computation of the stationary distribution of a transition matrix from the viewpoint of the Perron vector of a nonnegative matrix, based on which an algorithm for the stationary distribution is proposed. The algorithm can also be used to compute the Perron root and the corresponding Perron vector of any nonnegative irreducible matrix. Furthermore, a numerical example is given to demonstrate the validity of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.