Abstract

We present an updated resistivity model from inversion of the 09GA-GA1 deep magnetotelluric survey, also known as the Georgina-Arunta survey. The data were originally collected in 2009 under Geoscience Australia’s Onshore Energy Security Program, together with deep seismic reflection data along the same line. The magnetotelluric data comprise broadband and long-period data. The broadband data were originally processed to a bandwidth of 0.04 s to 100 s, but have been reprocessed yielding an extended bandwidth of 0.04 s to 1000 s, which improves the resolution of deeper (>20 km depth) structures. Inversions have been carried out using the ModEM 3D inversion code given that the data indicate the presence of 3D geoelectric structure. The updated resistivity model reveals that the Casey Inlier and Irindina Province are associated with high resistivities (>2000 Ωm). In contrast, the Aileron Province, which underlies and surrounds the Irindina Province, is predominantly conductive (resistivities <50 Ωm). The Georgina Basin is associated with low resistivities, as would be expected for a sedimentary basin, while the Amadeus Basin is associated with low resistivities in the southern part of the line (where it overlies the Casey Inlier), and higher resistivities further north.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.