Abstract

The problem of the symmetric instability of the steady-state motions of an incompressible ideal liquid which is stratified with respect to its density is investigated in the case of two types of motion, axially symmetric and with translational symmetry. It is shown that the sufficient condition for stability obtained in [1] using a variational method (the direct Lyapunov method) for the motions under consideration is closely related to the extremal nature of their energy; stable motions are characterized by a conditional minimum of the energy. A minimum of the energy holds in the class of states for which a potential vortex, expressed in terms of the Lagrangian invariants, angular momentum and density, is represented by the same function of these invariants. Conditions for instability are formulated and estimates of the increase in the kinetic energy of perturbations are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.