Abstract

We consider a controlled nonlinear mechanical system described by the Lagrange equations. We determine the control forces Q1 and the restrictions for the perturbations Q2 acting on the mechanical system which allow to guarantee the asymptotic stability of the program motion of the system. We solve the problem of stabilization by the direct Lyapunov's method and the method of limiting functions and systems. In this case we can use the Lyapunov's functions having nonpositive derivatives. The following examples are considered: stabilization of program motions of mathematical pendulum with moving point of suspension and stabilization of program motions of rigid body with fixed point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.