Abstract

ABSTRACTThe use of human pluripotent stem cells to model human diseases has become a new standard in biomedical sciences. To this end, patient-derived somatic cells are studied in vitro to mimic human pathological conditions. Here, we describe an alternative experimental strategy, the ‘conditional KO approach’, which allows engineering disease-relevant mutations in pluripotent stem cells from healthy donors. In combination with the Cre/Lox technology, this strategy enables us to study the molecular causes of human diseases independent of the genetic background or of genetic alterations induced by clonal selection. As a proof-of-principle, we generated pluripotent stem cells with conditional loss-of-function mutations in the human STXBP1 gene that encodes Munc18-1. Using neurons derived from these cells, we show that heterozygous disruption of STXBP1 produces a specific and selective impairment in synaptic transmission that may account for the severe neurological disease caused by such mutations in human patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call