Abstract

It has been reported in the literature that moduli of elasticity of the austenite and martensite of near-equiatomic NiTi differ often by a factor of 3. It is expected that a phase transformation between the two phases may be induced by the application of a stress, according to thermodynamic principles. This is due to the fact that the difference in elastic energy caused by the change in modulus of elasticity serves as a driving force for the transformation, similar to the effect of the lattice distortion of the martensite on the transformation. A thermodynamic equation expressing this effect is derived. It is expected, based on the understanding of this equation, that the relationship between the critical stress and the temperature for a thermoelastic martensitic transformation is non-linear if the transformation involves a large change in modulus of elasticity. Therefore, this equation may be used for either of two purposes: to clarify the reliability of the experimentally determined moduli of elasticity of the two phases or to verify the Clausius–Clapeyron relation between the critical stress and the temperature for the transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.