Abstract

Abstract The influences of grain boundaries and relative grain misorientations on stress-induced martensitic transformations in NiTi are studied using unique experiments and finite element modeling. Tensile and compressive mechanical tests reveal that polycrystalline NiTi with a dominant fiber texture and single crystal NiTi oriented along the [111] direction exhibit nearly identical stress–strain curves during a stress-induced martensitic transformation. Micro-mechanical finite element simulations of fiber textured polycrystals and single crystals undergoing a multi-variant martensitic transformation confirm the relative indifference of the macroscopic transformation attributes to the presence of grain boundaries. On the microscale, the finite element simulations further reveal that the insensitivity of the transformation to intergranular constraint is linked to the local stress disturbance created by transforming grains. The transformation of grains that are favorably oriented with respect to the loading axis creates local stresses that invariably assist the transformation in neighboring grains, effectively lowering the influence of grain misorientations and boundaries on the macroscopic transformation behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call