Abstract

The paper extends the concept of the Lie derivative of the vector field, used in the study of the continuous-time dynamical systems, for the discrete-time case. In the continuous-time case the Lie derivative of a vector field (1-form or scalar function) with respect to the system dynamics is defined as its rate of change in time. In the discrete-time case we introduce the algebraic definition of the Lie derivative, using the concepts of forward and backward shifts. The definitions of discrete-time forward and backward shifts of the vector field are based on the concepts of already known forward and backward shifts of the 1-forms and on the scalar product of 1-form and vector field. Further we show that the interpretation of the discrete-time Lie derivative agrees with its interpretation as the rate of change in the continuous-time case. Finally, the geometric property of the discrete-time Lie derivative is also examined and shown to mimic the respective property in the continuous-time case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.