Abstract

This paper investigates the problem of observer-based output feedback control for linear networked systems with dual-channel event-triggered mechanisms and quantization. Both continuous-time and discrete-time event detection cases are discussed. In the continuous-time case, the stability of observer error dynamics and closed-loop system are analyzed respectively, and it is proved that Zeno behavior would not occur. In order to approach engineering practice, in the discrete-time case, two types of network attacks including denial-of-service (DoS) and fault data injection (FDI) attacks are considered, whose nature property is characterized by Bernoulli variables. By combining these factors and transmission delay, a novel augmented system model is proposed, and some sufficient conditions are derived based on Lyapunov functional approach and linear matrix inequalities (LMIs). Compared with the existing results, this framework is more comprehensive and practical, and the global uniform ultimate boundedness of closed-loop systems can be guaranteed. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.