Abstract

In this paper a microscopic quantum mechanical model of computers as represented by Turing machines is constructed. It is shown that for each numberN and Turing machineQ there exists a HamiltonianH N Q and a class of appropriate initial states such that if c is such an initial state, thenψ Q N (t)=exp(−1H N Q t)ψ Q N (0) correctly describes at timest 3,t 6,⋯,t 3N model states that correspond to the completion of the first, second, ⋯, Nth computation step ofQ. The model parameters can be adjusted so that for an arbitrary time intervalΔ aroundt 3,t 6,⋯,t 3N, the “machine” part ofψ Q N (t) is stationary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.