Abstract

This chapter presents the details of the optical manipulation of electron spin states. It also addresses manifestations of the electron and nuclear spin dynamics in optical response of semiconductor nanostructures via spin-Faraday and -Kerr effects. Coupling of spins with light provides the most efficient method of nonmagnetic spin manipulation. The main aim of this chapter is to provide the theoretical grounds for optical spin injection, ultrafast spin control, and readout of spin states by means of circularly and linearly polarized light pulses. The Faraday and Kerr effects induced by the electron and nuclear spin polarization are analyzed both by means of a macroscopic, semi-phenomenological approach and by using the microscopic quantum mechanical model. Theoretical analysis is supported by experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call