Abstract
Humans do not integrate new information objectively: outcomes carrying a positive affective value and evidence confirming one's own prior belief are overweighed. Until recently, theoretical and empirical accounts of the positivity and confirmation biases assumed them to be specific to 'high-level' belief updates. We present evidence against this account. Learning rates in reinforcement learning (RL) tasks, estimated across different contexts and species, generally present the same characteristic asymmetry, suggesting that belief and value updating processes share key computational principles and distortions. This bias generates over-optimistic expectations about the probability of making the right choices and, consequently, generates over-optimistic reward expectations. We discuss the normative and neurobiological roots of these RL biases and their position within the greater picture of behavioral decision-making theories.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have