Abstract

In recent years, the increase in the drivage rates of continuous miners has exacerbated the environmental conditions experienced within the rapid development headings of many deep UK coal mines. This paper presents the conclusions drawn from the analysis of a series of validated computational studies conducted to assess the effectiveness of alternative auxiliary ventilation systems on the mitigation of any adverse environmental conditions experienced within these drivages. A series of steady-state computational fluid dynamics (CFD) models were constructed to replicate the ventilation flow patterns seen at the head end of a drivage during the various stages of a cutting and bolting cycle. The results obtained from these simulations were compared against the data obtained from a series of full scale ventilation experiments conducted within a rapid development drivage of a representative UK deep coal mine. It is concluded that CFD models may be successfully used to identify the ventilation characteristics associated with the various auxiliary ventilation systems during a typical cutting bolting cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call