Abstract

The production of dust when driving mining roadways can affect workers health. In addition, there is a decrease in productivity since Mine Safety regulations establish a reduction in the working time depending on the quartz content and dust concentration in the atmosphere. One of the gate roadways of the longwall named E4-S, belonging to the underground coal mine Carbonar SA located in Northern Spain, is being driven by an AM50 roadheader machine. The mined coal has a high coal dust content. This paper presents a study of dust behaviour in two auxiliary ventilation systems by Computational Fluid Dynamics (CFD) models, taking into account the influence of time. The accuracy of these CFD models was assessed by airflow velocity and respirable dust concentration measurements taken in six points of six roadway cross-sections of the mentioned operating coal mine. It is concluded that these models predicted the airflow and dust behaviour at the working face, where the dust source is located, and in different roadways cross-sections behind the working face. As a result, CFD models allow optimization of the auxiliary ventilation system used, avoiding the important deficiencies when it is calculated by conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.