Abstract

The Minimum Degree algorithm, one of the classical algorithms of sparse matrix computations, is widely used to order graphs to reduce the work and storage needed to solve sparse systems of linear equations. There has been extensive research involving practical implementations of this algorithm over the past two decades. However, little has been done to establish theoretical bounds on the computational complexity of these implementations. We study the Minimum Degree algorithm, and prove time complexity bounds for its widely used variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.