Abstract
The applicability of static data flow architectures to the iterative solution of sparse linear systems of equations is investigated. An analytic performance model of a static data flow computation is developed. This model includes both spatial parallelism, concurrent execution in multiple PEs, and pipelining, the streaming of data from array memories through the PEs. The performance model is used to analyze a row-partitioned iterative algorithms for solving sparse linear systems of algebraic equations. On the basis of this analysis, design parameters for the static data flow architecture as a function of matrix sparsity and dimension are proposed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.