Abstract
Zirconia dental ceramics have evolved from uniform blocks of 3 mol.% yttria (3Y) to strength- and color-graded blocks containing 3 mol.% and 5 mol.% components. Relatively little is known about the graded materials’ compositions and microstructures. Concerns have been raised about aging and degradation. This study investigated the microstructure, elemental composition, and phase content of different zones of strength- and color-graded zirconia blocks using scanning electron microscopy, x-ray fluorescence, and x-ray diffraction. Specimens were made from green-state blocks using CAD/CAM machining and sintering. Two strength- and color-graded zirconia materials had different grain sizes, elemental compositions, and phase contents between their top and bottom zones, these data being internally consistent as well as being broadly consistent with prior compositional physical property data. A color-graded zirconia material did not exhibit substantial differences between its top and bottom zones, consistent with expectations and previously published data. Modeling phase content for complex yttria-doped zirconia crystal systems with multiple heterogeneous crystal lattices from XRD data was inherently difficult, which may account for the ranges among previously published data; authors should describe detailed methodologies. Detailed compositional data at the scale of the microstructure is needed to relate composition to phase content, physical behavior, including crack evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.