Abstract

A Kalman filter estimation of the state of a system is merely a random vector that has a normal, also called Gaussian, distribution. Elementary statistics teaches any Gaussian distribution is completely and uniquely characterized by its mean and covariance (variance if univariate). Such characterization is required for statistical inference problems on a Gaussian random vector. This mean and composite covariance of a Kalman filter estimate of a system state will be derived here. The derived covariance is in recursive form. One must not confuse it with the “error covariance” output of a Kalman filter. Potential applications, including geological ones, of the derivation are described and illustrated with a simple example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.