Abstract
This paper uses Bayesian stochastic frontier methods to decompose output change into technical, efficiency and input changes. In the context of macroeconomic growth exercises, which typically involve small and noisy data sets, we argue that stochastic frontier methods are useful since they incorporate measurement error and assume a (flexible) parametric form for the production relationship. These properties enable us to calculate measures of uncertainty associated with the decomposition and minimize the risk of overfitting the noise in the data. Tools for Bayesian inference in such models are developed. An empirical investigation using data from 17 OECD countries for 10 years illustrates the practicality and usefulness of our approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have