Abstract
Motivated by the formula for the sum of the geometric series, we consider various classes of sets S �¼ Zd of integer points for which an a priori �glong�h Laurent series or polynomial m�¸S xm can be written as a �gshort�h rational function f (S; x). Examples include the sets of integer points in rational polyhedra, integer semigroups, and Hilbert bases of rational cones, among others. We discuss applications to efficient counting and optimization and open questions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have