Abstract
The model-checking problem for a logic L on a class C of structures asks whether a given L-sentence holds in a given structure in C. In this paper, we give super-exponential lower bounds for fixed-parameter tractable model-checking problems for first-order and monadic second-order logic. We show that unless PTIME=NP, the model-checking problem for monadic second-order logic on finite words is not solvable in time f( k)· p( n), for any elementary function f and any polynomial p. Here k denotes the size of the input sentence and n the size of the input word. We establish a number of similar lower bounds for the model-checking problem for first-order logic, for example, on the class of all trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.