Abstract
The model-checking problem for a logic L on a class C of structures asks whether a given L-sentence holds in a given structure in C. In this paper, we give super-exponential lower bounds for fixed-parameter tractable model-checking problems for first-order and monadic second-order logic. We show that unless PTIME=NP, the model-checking problem for monadic second-order logic on finite words is not solvable in time f(k)/spl middot/p(n), for any elementary function f and any polynomial p. Here k denotes the size of the input sentence and n the size of the input word. We prove the same result for first-order logic under a stronger complexity theoretic assumption from parameterized complexity theory. Furthermore, we prove that the model-checking problems for first-order logic on structures of degree 2 and of bounded degree d/spl ges/3 are not solvable in time 2(2/sup o(k)/)/spl middot/p(n) (for degree 2) and 2(2/sup 2o(k)/)/spl middot/p(n) (for degree d), for any polynomial p, again under an assumption from parameterized complexity theory. We match these lower bounds by corresponding upper bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.